
The Poincaré Algebra Interpolation between
Instant Form Dynamics (IFD)

and
Light Front Dynamics (LFD)

Dissertations External presentation

Hariprashad Ravikumar*
*hariprashadr.ph.19@nitj.ac.in

Under the supervision of
Dr Harleen Dahiya

Hariprashad Ravikumar 1 / 24



Table of Contents
1 ABSTRACT
2 Poincaré algebra
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ABSTRACT

ABSTRACT

The instant form and the front form of relativistic dynamics introduced by Dirac
in 1949 can be interpolated by introducing an interpolation angle parameter δ
spanning between the instant form dynamics (IFD) at δ = 0 and the front form
dynamics, which is now known as the light-front dynamics (LFD) at δ = π

4 . We
present the Poincaré algebra interpolating between instant and light-front time
quantizations. We show the Boost K 3 is dynamical in the region where 0 ≤ δ < π

4
but becomes kinematic in the light-front limit (δ = π

4 ). We show this will then be
extended to Conformal algebra.
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Poincaré algebra Commutations

Commutations
The generators of the Poincaré group are

(translation) P µ̂ = −i∂µ̂ , (1)
(rotation) Lµ̂ν̂ = i

(
x µ̂∂ν̂ − x ν̂∂µ̂

)
, (2)

Then the Poincaré algebra (commutation rules) can be derived as,
1) Commutation among Pµ,

[Pµ,Pν ] = PµPν − PνPµ = i2(∂µ∂ν − ∂ν∂µ) = 0 ,
[Pµ,Pν ] = 0X . (3)

2) Commutation among Pρ and Lµν ,

[Pρ, Lµν ] = PρLµν − LµνPρ = −i2(∂ρ (xµ∂ν − xν∂µ)− (xµ∂ν − xν∂µ) ∂ρ) ,
= −i2 (∂ρxµ∂ν + xµ∂ρ∂ν − ∂ρxν∂µ − xν∂ρ∂µ − xµ∂ν∂ρ + xν∂µ∂ρ) ,

= −i2 (∂ρxµ∂ν − ∂ρxν∂µ) = i (gρµ(−i∂ν)− gρν(−i∂µ)) ,[
Pρ, Lµν̂

]
= i (gρµPν − gρνPµ)X . (4)
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Poincaré algebra Commutations

Commutations

3) Commutation among Lµν ,[
Lαβ , Lρσ

]
= LαβLρσ − LρσLαβ ,

= i2 ((xα∂β − xβ∂α
)

(xρ∂σ − xσ∂ρ)− (xρ∂σ − xσ∂ρ)
(
xα∂β − xβ∂α

))
,[

Lαβ , Lρσ
]

= −i
(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
X .

So, the Poincaré algebra are:

[Pµ,Pν ] = 0 , (5)[
Pρ, Lµν̂

]
= i (gρµPν − gρνPµ) , (6)[

Lαβ , Lρσ
]

= −i
(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
. (7)
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Light-Front Dynamics

LFD

According to Dirac “ ... the three-dimensional surface in space-time formed by a
plane wave front advancing with the velocity of light. Such a surface will be called
front for brevity”. An example of a light-front is given by the equation
x+ = x0 + x3 = 0.
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Light-Front Dynamics

The variables x+ = x0+x3
√

2 and x− = x0−x3
√

2 are called light-front time and
longitudinal space variables respectively. Transverse variable x⊥ = (x1, x2).
We denote the four-vector xµ by

xµ = (x0, x1, x2, x3) = (x0, x⊥, x3) . (8)

Scalar product

x .y = x+y− + x−y + − x⊥.y⊥. (9)

The metric tensor is

gµν =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 , (10)

gµν =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 . (11)
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Light-Front Dynamics Poincare Generators and Algebra

Let us denote the three generators of boosts by K i and the three generators of
rotations by J i in equal-time dynamics. Define E 1 = −K 1 + J2, E 2 = −K 2 − J1,
F 1 = −K 1 − J2, and F 2 = −K 2 + J1. The explicit expressions for the 6
generators K 3, E 1, E 2, J3, F 1, and F 2 in the finite dimensional representation are

K 3 = −i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , E 1 = −i


0 −1 0 0
−1 0 0 −1
0 0 0 0
0 1 0 0

 , (12)

E 2 = −i


0 0 −1 0
0 0 0 0
−1 0 0 −1
0 0 1 0

 , J3 = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , (13)

F 1 = −i


0 −1 0 0
−1 0 0 1
0 0 0 0
0 −1 0 0

 , F 2 = −i


0 0 −1 0
0 0 0 0
−1 0 0 1
0 0 −1 0

 . (14)

Note that K 3, E 1, E 2, and J3 leave x+ = 0 invariant and are kinematical
generators while F 1 and F 2 do not and are dynamical generators.
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Light-Front Dynamics Poincare Generators and Algebra

From the Lagrangian density one may construct the stress tensor T µν and from
the stress tensor one may construct a four-momentum Pµ and a generalized
angular momentum Lµν .

Pµ =
∫

dx−d2x⊥ T +µ, (15)

Lµν =
∫

dx−d2x⊥[xν T +µ − xµ T +ν ]. (16)

Note that Lµν is antisymmetric and hence has six independent components.
Poincare algebra in terms of Pµ and Lµν is

[Pµ,Pν ] = 0, (17)

[Pµ, Lρσ] = i [gµρPσ − gµσPρ], (18)

[Lµν , Lρσ] = i [−gµρLνσ + gµσLνρ − gνσLµρ + gνρLµσ]. (19)

In light-front dynamics P− is the Hamiltonian and P+ and P i (i = 1, 2) are the
momenta. L−+ = K 3 and L+i = E i are the boosts. L12 = J3 and L−i = F i are
the rotations.
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Interpolation between IFD and LFD Method of Interpolation Angle
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Interpolation between IFD and LFD Method of Interpolation Angle

Method of Interpolation Angle
The interpolating space-time coordinates may be defined as a transformation from
the ordinary space-time coordinates, x µ̂ = Rµ̂

νxν , i.e.
x +̂

x 1̂

x 2̂

x −̂

 =


cos δ 0 0 sin δ

0 1 0 0
0 0 1 0

sin δ 0 0 − cos δ




x0

x1

x2

x3

 , (20)

in which the interpolation angle is allowed to run from 0 through 45◦, 0 ≤ δ ≤ π
4 .
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Interpolation between IFD and LFD Method of Interpolation Angle

Method of Interpolation Angle

In this interpolating basis, the metric becomes

g µ̂ν̂ = gµ̂ν̂ =


C 0 0 S
0 −1 0 0
0 0 −1 0
S 0 0 −C

 , (21)

where S = sin 2δ and C = cos 2δ.
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Interpolation between IFD and LFD The Poincaré matrix

The Poincaré matrix

Mµν =


0 K 1 K 2 K 3

−K 1 0 J3 −J2

−K 2 −J3 0 J1

−K 3 J2 −J1 0

 (22)

transforms as well, so that

M µ̂ν̂ =


0 E 1̂ E 2̂ −K 3

−E 1̂ 0 J3 −F 1̂

−E 2̂ −J3 0 −F 2̂

K 3 F 1̂ F 2̂ 0

 (23)

where
E 1̂ = J2 sin δ + K 1 cos δ,
E 2̂ = K 2 cos δ − J1 sin δ,
F 1̂ = K 1 sin δ − J2 cos δ,
F 2̂ = K 2 sin δ + J1 cos δ. (24)
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Interpolation between IFD and LFD The Poincaré matrix

The Poincaré matrix

Mµ̂ν̂ = gµ̂α̂Mα̂β̂gβ̂ν̂ =


0 D1̂ D2̂ K 3

−D1̂ 0 J3 −K1̂

−D2̂ −J3 0 −K2̂

−K 3 K1̂ K2̂ 0

 , (25)

where

K1̂ = −K 1 sin δ − J2 cos δ,
K2̂ = J1 cos δ − K 2 sin δ,
D1̂ = −K 1 cos δ + J2 sin δ,
D2̂ = −J1 sin δ − K 2 cos δ. (26)
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Interpolation between IFD and LFD Generators of Poincaré group

Generators of Poincaré group

(translation) P µ̂ = −i∂µ̂, (27)
(rotation) Lµ̂ν̂ = i

(
x µ̂∂ν̂ − x ν̂∂µ̂

)
. (28)

In the interpolating basis, the metric becomes

g µ̂ν̂ = gµ̂ν̂ =


C 0 0 S
0 −1 0 0
0 0 −1 0
S 0 0 −C

 , (29)

The Poincaré algebra (Contra-variant form) in this interpolating basis is given by[
P µ̂,P ν̂

]
= 0, (30a)[

P ρ̂, Lµ̂ν̂
]

= i
(
g ρ̂µ̂P ν̂ − g ρ̂ν̂P µ̂

)
, (30b)[

Lα̂β̂ , Lρ̂σ̂
]

= −i
(

g β̂σ̂Lα̂ρ̂ − g β̂ρ̂Lα̂σ̂ + g α̂ρ̂Lβ̂σ̂ − g α̂σ̂Lβ̂ρ̂
)
. (30c)
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Interpolation between IFD and LFD Kinematic and dynamic generators of Poincaré group

A comprehensive table of the 45 commutation relations among the co-variant
components of the Poincare´ generators is presented below:

P+̂ P1̂ P2̂ K 3̂ D1̂ D2̂ J 3̂ K1̂ K2̂ P−̂

P+̂ 0 0 0 i
(
CP−̂ − SP+̂

)
iCP1̂ iCP2̂ 0 iSP1̂ iSP2̂ 0

P1̂ 0 0 0 0 iP+̂ 0 −iP2̂ iP−̂ 0 0

P2̂ 0 0 0 0 0 iP+̂ iP1̂ 0 iP−̂ 0

K 3̂ −i
(
CP−̂ − SP+̂

)
0 0 0 iSD1̂ − iCK1̂ iSD2̂ − iCK2̂ 0 −iSK1̂ − iCD1̂ −iSK2̂ − iCD2̂ −i

(
SP−̂ + CP+̂

)
D1̂ −iCP1̂ −iP+̂ 0 −iSD1̂ + iCK1̂ 0 −iCJ 3̂ −iD2̂ −iK 3̂ −iSJ 3̂ −iSP1̂

D2̂ −iCP2̂ 0 −iP+̂ −iSD2̂ + iCK2̂ iCJ 3̂ 0 iD1̂ iSJ 3̂ −iK 3̂ −iSP2̂

J 3̂ 0 iP2̂ −iP1̂ 0 iD2̂ −iD1̂ 0 iK2̂ −iK1̂ 0

K1̂ −iSP1̂ −iP−̂ 0 iSK1̂ + iCD1̂ iK 3̂ −iSJ 3̂ −iK2̂ 0 iCJ 3̂ iCP1̂

K2̂ −iSP2̂ 0 −iP−̂ iSK2̂ + iCD2̂ iSJ 3̂ iK 3̂ iK1̂ −iCJ 3̂ 0 iCP2̂

P−̂ 0 0 0 i
(
SP−̂ + CP+̂

)
iSP1̂ iSP2̂ 0 −iCP1̂ −iCP2̂ 0

Interpolation angle Kinematic Dynamic
δ = 0 K1̂ = −J2,K2̂ = J1, J3,P1,P2,P3 D1̂ = −K 1,D2̂ = −K 2,K 3,P0

0 ≤ δ < π/4 K1̂,K2̂, J3,P1,P2,P−̂ D1̂,D2̂,K 3,P+̂
δ = π/4 K1̂ = −E 1,K2̂ = −E 2, J3,K 3,P1,P2,P− D1̂ = −F 1,D2̂ = −F 2,P+

Chueng-Ryong Ji and Chad Mitchell, Phys. Rev. D 64, 085013 (2001).
Chueng-Ryong Ji, Ziyue Li, and Alfredo Takashi Suzuki, Phys. Rev. D 91,
065020 (2015).
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Interpolation between IFD and LFD Kinematic and dynamic generators of Poincaré group

IFD
The following table summarizes the commutation relations (contra-variant form)
between the Poincare generators explicitly in Instant Form Dynamics (IFD) (when
interpolation angle, δ = 0),

P0 P1 P2 −K 3 K 1 K 2 J3 J2 −J1 P3

P0 0 0 0 iP3 iP1 iP2 0 0 0 0

P1 0 0 0 0 iP0 0 −iP2 −iP3 0 0

P2 0 0 0 0 0 iP0 iP1 0 −iP3 0

−K 3 −iP3 0 0 0 iJ2 −iJ1 0 iK 1 iK 2 iP0

K 1 −iP1 −iP0 0 −iJ2 0 −iJ3 −iK 2 iK 3 0 0

K 2 −iP2 0 −iP0 iJ1 iJ3 0 iK 1 0 iK 3 0

J3 0 iP2 −iP1 0 iK 2 −iK 1 0 −iJ1 −iJ2 0

J2 0 iP3 0 −iK 1 −iK 3 0 iJ1 0 iJ3 iP1

−J1 0 0 +iP3 −iK 2 0 −iK 3 iJ2 −iJ3 0 iP2

P3 0 0 0 −iP0 0 0 0 −iP1 −iP2 0

Hariprashad Ravikumar 17 / 24



Interpolation between IFD and LFD Kinematic and dynamic generators of Poincaré group

LFD
The following table summarizes the commutation relations (contra-variant form)
between the Poincare generators explicitly in Light-Front Dynamics (LFD) (when
interpolation angle, δ = π

4 ),

P+ P1 P2 K 3 E 1 E 2 J3 F 1 F 2 P−

P+ 0 0 0 iP− 0 0 0 iP1 iP2 0

P1 0 0 0 0 iP− 0 −iP2 iP+ 0

P2 0 0 0 0 0 iP− iP1 0 iP+ 0

K 3 −iP− 0 0 0 −iE 1 −iE 2 0 iF 1 iF 2 iP+

E 1 0 −iP− 0 iE 1 0 0 −iE 2 −iK 3 −iJ3 −iP1

E 2 0 0 −iP− iE 2 0 0 iE 1 iJ3 −iK 3 −iP2

J3 0 iP2 −iP1 0 iE 2 −iE 1 0 iF 2 −iF 1 0

F 1 −iP1 −iP+ 0 −iF 1 iK 3 −iJ3 −iF 2 0 0 0

F 2 −iP2 0 −iP+ −iF 2 iJ3 iK 3 iF 1 0 0 0

P− 0 0 0 −iP+ iP1 iP2 0 0 0 0
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Interpolation between IFD and LFD Kinematic and dynamic generators of Poincaré group

Kinematic and dynamic generators for different interpolation angles (Phys. Rev.
D 64, 085013 (2001); Phys. Rev. D 91, 065020 (2015))

Interpolation angle Kinematic Dynamic
δ = 0 K1̂ = −J2,K2̂ = J1, J3,P1,P2,P3 D1̂ = −K 1,D2̂ = −K 2,K 3,P0

0 ≤ δ < π/4 K1̂,K2̂, J3,P1,P2,P−̂ D1̂,D2̂,K 3,P+̂
δ = π/4 K1̂ = −E 1,K2̂ = −E 2, J3,K 3,P1,P2,P− D1̂ = −F 1,D2̂ = −F 2,P+

Among the ten Poincaré generators, the six generators
(K1̂,K2̂, J3,P1,P2,P−̂) are always kinematic in the sense that the x +̂ = 0
plane is intact under the transformations generated by them. The operator
K 3 = M+̂−̂ is dynamical in the region where 0 ≤ δ < π/4 but becomes
kinematic in the light-front limit (δ = π/4).
To understand this, note that [P+̂,K 3̂] = i(SP+̂ −CP−̂)→ iP+̂ as δ → π/4.
Similarly we have [x +̂, L−̂+̂] = i(Sx +̂ − Cx −̂)→ ix +̂ as δ → π/4. Therefore
the instant defined by x+ = 0 becomes invariant under longitudinal boosts as
we move to the light front.
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Extension to Conformal Group Conformal Transformations

Conformal Transformations
The Conformal transformation x 7−→ x ′ can be defined by,

∂x ′α
∂xµ

∂x ′β
∂xν

g ′αβ = F (x)gµν (31)

Consider an infinitesimal translation,
x ′µ = xµ + εµ(x) . (32)

The metric changes by,

δgµν = ∂εµ
∂xν

+ ∂εν
∂xµ

= ∂µεν(x) + ∂νεµ(x) (33)

Conformality then requires,

∂µεν(x) + ∂νεµ(x) = F (x)δµν Conformal Killing Equation (34)

contraction with δµν yields
2 ∂µεµ =F (x) d (35)

=⇒ F (x) = 2
d ∂µε

µ (36)
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Extension to Conformal Group Conformal Algebra

Conformal Transformations

For d ≥ 3, there are ONLY 4 calsses of solutions for εµ(x)

(Infinitesimal Translation) εµ(x) = aµ (constant) (37)
(Infinitesimal Rotation) εµ(x) = Lµ

ν xν (38)
(Infinitesimal Scaling) εµ(x) = λxµ (39)

(Infinitesimal SCT) εµ(x) = 2(b.x)xµ − x2bµ (40)

The generators of conformal transformations are:

(translation) Pµ = −i∂µ ,

(dilation) D = −ixµ∂
µ ,

(rotation) Lµν = i (xµ∂ν − xν∂µ) ,

(SCT) Kµ = −i
(
2xµxν∂

ν − x2∂µ
)
.

Hariprashad Ravikumar 21 / 24



Extension to Conformal Group Conformal Algebra

Conformal algebra

the full Conformal algebra is given by

[Pµ,Pν ] = 0,
[Kµ,Kν ] = 0,
[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,[
Pρ, Lµν̂

]
= i (gρµPν − gρνPµ),

[Kρ, Lµν ] = i (gρµKν − gρνKµ),[
Lαβ , Lρσ

]
= −i

(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
,

[Kµ,Pν ] = 2i (gµνD − Lµν),
[D, Lµν ] = 0.
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Conclusion & Future Scope

Conclusion & Future Scope

We presented the Poincaré algebra in Interpolation form. We showed the Boost
K 3 is dynamical in the region where 0 ≤ δ < π

4 but becomes kinematic in the
light-front limit (δ = π

4 ).
Then, we formally developed the Conformal algebra and showed that the set of
conformal transformations manifestly forms a group, and it has the Poincaré
group as a subgroup. Our future work is to extend the Interpolation method to
Conformal algebra.
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