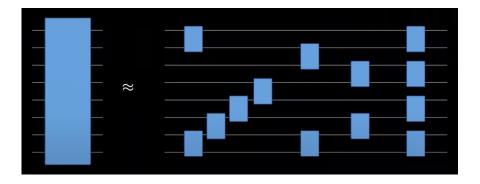
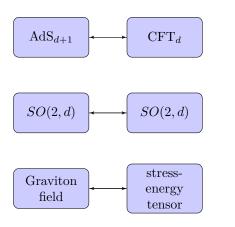
Complexity, and AdS/CFT

Hariprashad Ravikumar¹


¹New Mexico State University, USA

May 06, 2024

Quantum Circuit complexity


How many 2-local gates are necessary to implement a unitary or a state?

 $\mathcal{C}(U) \tag{0.1}$

AdS/CFT

Anti de-Sitter/Conformal Field Theories

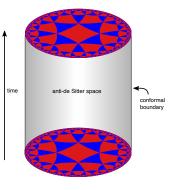


Figure 1: AdS/CFT¹

 $^{1} https://en.wikipedia.org/wiki/AdS/CFT_correspondence$

CFT

We can discretize the space and time on which the CFT is defined and idealize it as a quantum circuit acting on a finite number of qubits:

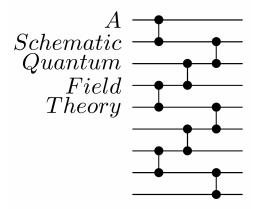


Figure 2: A schematic quantum CFT 2

²Aaronson, S. (2016). ArXiv. /abs/1607.05256.

Wormhole-volume in Ads

Susskind ³ pointed out that the map between bulk and boundary doesn't seem to be complexity-preserving!

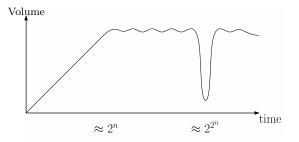


Figure 3: Volume of the wormhole in the AdS side ⁴

⁴Aaronson, S. (2018). PiTP summer school lectures

hari1729@nmsu.edu

³Susskind, L. (2014). ArXiv. /abs/1412.8483

States in CFT

When we look at the CFT dual, we will get Thermofield Double State $|\psi_0\rangle$ is maximally entangled between two identical Hilbert spaces ⁵:

$$|\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in (0,1)^n} |y\rangle \otimes |y\rangle \tag{0.2}$$

After time t

$$\begin{aligned} |\psi_t\rangle &= \frac{1}{\sqrt{2^n}} \sum_{y \in (0,1)^n} e^{-iHt} |y\rangle \otimes e^{iHt} |y\rangle \end{aligned} \tag{0.3} \\ |\psi_t\rangle &= \frac{1}{\sqrt{2^n}} \sum_{y \in (0,1)^n} |y\rangle \otimes U^t |y\rangle \end{aligned} \tag{0.4}$$

where, $U = (e^{-iHt})^T e^{iHt}$. If we apply $UU \cdots U |0\rangle^{\otimes n}$, we'll get something that very quickly "thermalizes."

 $^{^5\}mathrm{Aaronson},\,\mathrm{S.}$ (2018). PiTP summer school lectures

- Then Susskind ⁶ raised the question: "What function of this state in CFT $f(|\psi_t\rangle)$ captures the property of the wormhole volume in the AdS side?".
- The proposal was the complexity of the quantum circuit $C(|\psi_t\rangle)$ of the state $|\psi_t\rangle$

$$\implies f(|\psi_t\rangle) = \mathcal{C}(|\psi_t\rangle) \tag{0.5}$$

⁶Susskind, L. (2014). ArXiv. /abs/1412.8483

Proposal

Because one can generate the CFT state $|\psi_t\rangle$ from *n* simple initial state (Bell pairs) by simply applying $U = (e^{-iHt})^T e^{iHt}$ repeatedly *t* times, and also upper bound 2^n times the polynomial in *n* because circuit complexity of every *n* qubit state is upper bounded,

$$\mathcal{C}(|\psi_t\rangle) \le \min\{t, 2^n\} n^{\mathcal{O}(1)}$$
(0.6)

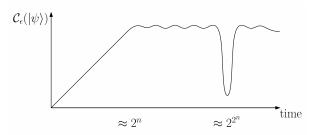


Figure 4: quantum circuit complexity $\mathcal{C}(|\psi_t\rangle)$ of the state $|\psi_t\rangle^7$

 $^{^7\}mathrm{Aaronson},\,\mathrm{S.}$ (2018). PiTP summer school lectures

- The concept that circuit complexity is equivalent to the volume of wormholes is still considered to be a conjecture that has not yet been proven.
- This complexity dictionary may even limit what one can learn about wormhole interiors from CFT
- But for now, circuit complexity has established itself as a valuable tool in studying the AdS/CFT correspondence.